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ABSTRACT 

The main result of this paper is tha t  if a sequence of complex numbers 

(an )n>O sa t i s f i e s  

n n (k)ak----O(n r )  a n d  ~ (k)ak=O(nr) 
k=O k=O 

k even k odd 

as  n -& oo~ 

for some integer r > 0, then an = 0 for all n > r. As an application, we 
deduce a localized form of a theorem of Allan about  nilpotent elements in 

Banach algebras, and this in turn  leads to an invariant-subspace theorem. 

As a further application, we prove a variant of Carleman's theorem on the 
unique determination of probability distributions by their moments. The 
paper concludes with a quantitat ive form of the main result. 
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1. I n t r o d u c t i o n  

Let (a~)n>_0 be a sequence of complex numbers, and let r _> 0. Clearly, if a~ = 0 

for all n > r, then 

k=O 

The converse is false. For example, the sequence a,~ = ( -1 )  '~ satisfies 

k ak=( l+( -1 ) ) '~=O f o r a l l n _ > l ,  
k=0 

but am does not even tend to zero. There is however a partial converse, which, 

in view of the example above, is perhaps a little surprising. 

THEOREM 1.1: Let (an),~>o be a sequence of complex numbers, and let r be a 

non-negative integer. Assume that 

( n )  O(nr ) and ~ (nk)ak=O(nr) asH--4 oo. (1) k ak = 
k = 0  k = O  

k e v e n  k o d d  

Then a,~ = 0 for all n > r. 

This theorem is the focal point of the paper. We present a short proof of it 

in w using the theory of entire functions of exponential type. Then, in w we give 

an application to Banach algebras, which leads to a theorem on invariant sub- 

spaces. A further application, to the determination of probability distributions, 

is outlined in w In w we give a second proof of Theorem 1.1 which, though 

longer, is more 'elementary' than the first, and has the advantage that it yields 

a quantitative version of the theorem. Finally, in w we make some concluding 

remarks and pose a few questions. 

2. P r o o f  o f  T h e o r e m  1.1 

An entire function f :  C --+ C is of exponential  type if 

log ]f(z) l  
T :---- l imsup - -  < oo, 

Izl-~ I z] 

in which case ~ is called the t y p e  of f .  If further T = 0, then f is said to be 

of m i n i m a l  e x p o n e n t i a l  t ype .  We refer to Boas's book [3] for background on 

entire functions. In particular, we shall have recourse to the following version of 

the Phragm6n-LindelSf principle. 
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PHRAGMI~N-LINDELOF PRINCIPLE ([3, Theorem 6.2.13]): Let f be an entire 

function of  minimal exponential type, and Iet r >_ O. Suppose that, on the real 

axis, f ( x )  = O(Ixl ~) as x --~ +c~. Then f is a polynomial of degree at most r. 

Proof of Theorem 1.1: Consider the expression 

oo 
a_g~ zn 

a(z) = ~ n! " 
n-~O 

We shall show successively that this defines an entire function of exponential 

type, that  it is of minimal exponential type and, finally, that  it is a polynomial 

of degree at most r, which will yield the desired conclusion. 

For n > 0, set 

bn = ak and cn = (--1)n-kak. 
k=0 k=0 

The hypotheses on (an) ensure that both bn, cn = O(n ~) as n --+ oo. Hence, if 

we set oo 
oo bn zn Cn 

b(z) = Z n.V and c ( z ) =  Z - -Z n ' n !  
n~O n~O 

then b and c are entire functions of exponential type at most i. Comparing 

coeff• of z n in the identities eZ(e-Zb(z)) = b(z) and e-Z(eZc(z) ) = c(z), we 

see that both e-Zb(z) and eZc(z) have the same coefficients as a(z), and therefore 

(2) ~(z) = e-Zb(z) = eZc(z) (z �9 C). 

In particular, a too is an entire function. Further, (2) implies that  a 2 = bc, and 

therefore a is also of exponential type at most 1. 

We next show that  a is in fact of minimal exponential type. To this end, we 

consider the Laplace transforms A, B, C of a, b, c respectively. Thus, for example, 

~0 ~ 
A(~) = a(x)e -zr dx. 

Since a, b, c are all of exponential type at most 1, it follows that  A, B, C are 

well-defined and holomorphic in {r Re ~ > 1}. Moreover, for Re r > 1, 

f0c~ (n~ .  0 oo oo an (3) A(C) = an~qe-~d~ = ~ an [ ~  .e_~d~ = ~ r 
n! J ~.J0 -- n----0 n=0 
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with analogous expansions for B, C. Using standard properties of Laurent series, 

it follows that A , B ,  C extend holomorphically to {~: [([ > 1}. Now, taking 

Laplace transforms in (2) gives, for R e (  > 1, 

A(() = B ( (  + 1) = C( (  - 1). 

Therefore A in fact extends holomorphically to {(: K +  1[ > 1} U{~: I ( - 1 [  > 1}, 

in other words, to C \{0} .  In conjunction with the Laurent expansion (3), this 

implies that  

la . l l /"  ~ O as n - ~  c~. 

It follows that a is of minimal exponential type. 

Finally, we show that a is a polynomial. For x > 0, we have 
c o  

Ib(x)l < ~lb~lx" -< E K ( n  + r)..._n~ (n + 1)x  n = K ( x r  eX)(r) ' 

n=O n=O 

where K is a constant independent of x. Therefore, using (2) again, 

la(z) l  = l e -~b(z ) l  ___ K e - X ( x r e ~ )  (r) = O ( z  ~) as x -~  o0. 

A similar calculation with c(x) in place of b(x) shows that a(x) = o(Ixl r) as 

x -~ -cx~. As a is of minimal exponential type, we can apply the Phragm6n- 

Lindel5f principle cited earlier to deduce that a is a polynomial of degree at 

most r. Hence a~ = 0 for all n > r, and the proof is complete. 1 

We conclude this section with a 'little o' version of Theorem 1.1. It is actually 

a simple consequence of the 'big O' form. 

COROLLARY 2.1: Let  (an)n>0 be a sequence of  complex numbers, and let r be 

a non-negative integer. Assume  that  

k ak = 0 n ~ and k ak = o(n ~ as n -+ oo. 
k = O  k ~ 0  

k e v e n  k odd 

Then an = 0 for all n >_ r. 

Proof'. From Theorem 1.1 we already have an = 0 for all n > r, so it only 

remains to show that  ar = 0. Now, for all n _> r, we have 

a r  = k a k  - -  a k .  

k=O k=O 

The first term on the right-hand side is o(n r) by hypothesis, and the second term 

is even O(n  r - l )  (or = 0 if r = 0). Therefore the left-hand side is also o(nr), and 

this can only happen if a~ = 0. II 
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3. A p p l i c a t i o n  t o  B a n a e h  a lgebras  a n d  inva r i an t  su b sp aees  

Recently, Allan [1] proved the following lemma of Gelfand-Hille type, which he 

used to give an improved version of a result of Kalton [4] on sums of idempotents. 

ALLAN'S LEMMA ([1, Lemma 3]): Let A be a Banach algebra wi th  iden t i ty  1, 

let x C A,  and suppose  that,  for integers m >_ O, r >_ O, 

(4) Ilxm((1 + X) n -- (1 -- X)n)ll = O(n r) as n -+ ~ .  

Then  x m+r+2 = 0 i f  r is odd, while x m+r+l = 0 if  r is even. Moreover, i f  r is 

odd  and i f  

Ilxm((l+xF-(1-x)n)ll=o(n as n --~ (x~, 

t h e n  X rnq-r : O, 

Theorem 1.1 and Corollary 2.1 permit us to prove a localized form of this result. 

(Here, and in what follows, E* denotes the dual space of a Banach space E.) 

THEOREM 3.1: Let  A be a Banach algebra wi th  ident i ty  1, let x e A and let 

c A*. Suppose  that,  for some integer r >_ O, 

(5) qo((1 + x) n - (1 - x) n) = O(n  r) as n ---+ c~. 

Then  ~(  x n) = 0 for all odd integers n > r. If  further 

~ ( ( l + x )  n - ( 1 - x )  n ) = o ( n  ~) a s n ~ c ~ ,  

then ~o(x n) = 0 for all odd integers n >_ r. 

Proof'. Observe that 

k=O, 
k o d d  

The result therefore follows by applying Theorem 1.1 and Corollary 2.1 to the 

sequence 
qo(xn), n odd, | 

an : O, n even. 

AllaH's lemma is an easy consequence of Theorem 3.1. Indeed, given x, m, r 

satisfying (4), take r E A* and define ~ e A* by 

~(y) = r  (y �9 A). 



308 I. CHALENDAR, K. KELLAY AND T. RANSFORD Isr. J. Math. 

Then (5) holds, so applying Theorem 3.1 we deduce that r  re+n) = 0 for all odd 

integers n > r. As r is arbitrary, it follows that x m+~ = 0 for all odd integers 

n > r. This gives the O(n ~) part of the result, and the o(n ~) part is proved 

similarly. 

It is much less clear whether Theorem 3.1 can be deduced from Allan's result. 

Allan's proof begins by showing that (4) implies that x is quasi-nilpotent, which 

fact he then exploits via elementary spectral theory and entire function theory 

to obtain the desired conclusion. However, the weaker hypothesis (5) no longer 

implies that  x is quasi-nilpotent, so a proof of Theorem 3.1 has to proceed along 

different lines. It was the search for a proof independent of spectral theory which 

eventually led to a result purely about complex numbers, Theorem 1.1. It should 

be added, however, that the last part of the proof of Theorem 1.1 (using the 

Phragm~n-LindelSf principle) owes much to Allan's paper. 

Because the proof of Theorem 3.1 uses no spectral theory, it is just as valid 

for real Banach algebras as for complex ones, and hence so too is the deduction 

of Allan's lemma. Perhaps more interestingly, Theorem 3.1 also leads to the 

following invariant-subspace theorem. (We use the usual notation (.,-> for duality, 

and I for the identity operator.) 

THEOREM 3.2: Let E be a (real or complex) infinite-dimensional Banach space, 

and let T be a bounded linear operator on E. Suppose that there exist a non-zero 

~o E E,  a non-zero r E E* and an integer r >_ 0 such that 

(r ( ( I  + T) n - (I  - T)n)~o> = O(n r) as n ~ co. 

Then T 2 has a non-trivial closed invaria~t subspace. 

Proof: The result is obvious if T = 0, so we can suppose that T ~ 0. Further, if 

T is not injective, then ker(T) is a non-trivial closed T2-invariant subspace, and 

we are done. So we may as well assume from the outset that  T is injective. 

Let A be the Banach algebra of bounded linear operators on E, let x = T and 

let ~ E A* be given by 

~(S) = (r (S E A). 

Then the hypothesis on T implies that (5) holds, so we can apply Theorem 3.1 

to conclude that  (r Tn~0) = 0 for all odd integers n > r. Let M be the closed 

linear span of {Tn~0: n odd, n > r}. Then M is a closed T2-invariant subspace 

of E.  Further, M r 0 since T is injective, and M r E since r  -- 0. Thus 

M is the required subspace. | 
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There is also a version of Theorem 3.1 in which the central ' - '  is replaced 

by % ' .  

THEOREM 3.3: Let A be a Banach algebra with identity 1, let x E A and let 

E A*. Suppose that, for some integer r >_ O, 

qo((1 + x) n + (1 - x) '~) = O(n r) as n -~ oc. 

Then ~(x n) = 0 for all even integers n > r. I f  further 

~((1 + x) ~ + (1 - x) n) = o(n r) as n --+ ~c, 

then qo(x ~) = 0 for all even integers n > r. 

Proof." This t ime 

( P ( ( l + x ) n + ( 1 - x ) n )  : 2  ~ (nk)(P(xk), 
k ~ O  

k e v e n  

so the result follows by applying Theorem 1.1 and Corollary 2.1 to the sequence 

{~(x ~), n even, 
an -- 0, n odd. I 

Both Allah's lemma and Theorem 3.2 likewise have 'q-' analogues, which we 

shall not s tate here. Finally, putt ing the ' - '  and the ' §  results together, we 

obtain an invariant-subspace theorem for T (rather than merely for T2). 

THEOREM 3.4: Let E be a (real or complex) infinite-dimensional Banach space, 

and let T be a bounded linear operator on E. Suppose that there exist a non-zero 

~o E E, a non-zero r E E* and an integer r ~_ 0 such that both 

(r (I + T)n~o} = O(n") and (r ( I  - T ) '~0)  = O(n") as n ~ co. 

Then T has a non-trivial closed invariant subspace. 

Proof: This follows the same lines as the proof of Theorem 3.2. As before, we 

can suppose that  T is injective. This time, applying both Theorems 3.1 and 3.3, 

we have (r T n ~ 0 / =  0 for all integers n > r. Let M be the closed linear span of 

{T"~o: n > r}. Then M is now T-invariant and, as before, M ~ 0 and M ~ E. 

I 



310 I. CHALENDAR, K. KELLAY AND T. RANSFORD Isr. J. Math. 

4. App l i ca t i on  to  p robab i l i t y  d i s t r i bu t i ons  

It is well known that  a probability distribution on R is uniquely determined by 

its moments, provided that they are finite and do not grow too rapidly. 

CARLEMAN'S THEOREM (see e.g. [5, p. 126]): Let  t~, u be Borel probabil i ty  mea- 

sures on R all of  whose moments  are finite. Suppose that, for each n >_ O, 

I? I? S ,  := t" d#(t)  = t ~ du(t),  
O 0  0~3 

and further, that  
O 0  

E sO/`` = oo. 

T h e n  # = v. 

In this section, we prove an analogue of Carleman's theorem for the complex 

moments f_~oo(1 + it) "~ d#(t) ,  but with the added twist that, even if the moments 

f_~oo(1 + it) '+ du(t)  are only 'approximately' equal to those of #, then still # = u. 

Here is the precise result. 

THEOREM 4 . 1  : Let  #, u be Borel probabil i ty measures on R all of  whose moment s  

are finite. Suppose that, for some integer r > O, 

f_+ f+ Z ,  := (1 + it) ~ dlz(t) = (1 + it.) n du(t) + O(n  r) as n ~ oo, 
O 0  O 0  

and further, that  

(6) ~-~ [Z2n[ -1/2n = co. 

Then # = v. 

The proof of Theorem 4.1, like that  of Carleman's theorem, is based on the 

theory of quasi-analytic classes. We refer to Koosis's book [5, Chapter IV] for 

backgrcurld in this subject. In particular, we shall need a slight variant of the 

Denjoy+Carleman theorem. To state it, we adopt the notation of [5, p. 79]: 

given a subinterval I (bounded or unbounded) of R, and a sequence (M,)n>0 of 

positive numbers, we write CI({M,}) for the family of all C~176 f :  I -4 C 

satisfying 
]f(n)(x)[ < cyp~Mn (x E I ,  n > 0), 

where cf ,  p l  are constants depending on f .  
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LEMMA 4.2: Let  (Mn)n>o be a sequence of  positive numbers  satisfying 

o o  

(7) M o = l ,  M 2<_M,~_IMn+I (n>_ l )  and E M ~ W n = c o "  
n = l  

Let  f �9 CR({M~}) ,  and suppose that, for some integer r > O, 

f(n)(O) = O for all n > r. 

Then  f is constant  on R .  

Proo~ Define g: R --+ C by 

-~ f(k)(O) xk (x �9 R) .  g(x) = f ( x )  - k! 
k = 0  

Then g E C ~ (R) and g('~)(0) = 0 for all n > 0. 

Now let I be an interval containing 0. Then certainly f ] I E  CI({Mn}) .  If, 

further, I is bounded, then CI({M~}) contains the polynomials, and hence also 

glI  �9 CI({M~}). The standard form of the Denjoy-Carleman theorem (see e.g. 

[5, p. 97]) now allows us to conclude that g]I =_ O. As this holds for every bounded 

interval I containing 0, it follows that g = 0 on R. 

Thus f is a polynomial. But also f is bounded on R, since, by definition of 

CR~{Mn}) ,  we have If(x)[ < cy for all x. Therefore, finally, f is constant on R. 
| 

Proof  of  Theorem 4.1: First observe that, for each n > 0, 

(1 + it) ~ dlz(t) - (1 + it) ~ dr( t )  = i k t k d(# - u)(t).  
o o  o 0  k = O  o o  

By hypothesis, the left-hand side is O(n  ~) as n --+ co. Hence, taking real and 

imaginary parts of the right-hand side, it follows that  

(;) L (;)? oo t k d ( # - , ) ( t )  = O(n r) and t k d ( # - u ) ( t )  = O(n~). 
k = O  0 0  k ~ O  O0 

k even  k o d d  

Applying Theorem 1.1, we deduce that  

? (8) t'* d(# - L,)(t) = 0 
o o  

for all n > r. 
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The rest of the proof follows the same lines as that of Carleman's theorem. 

For n > 0, define 

if? M,~ = ~ Oo It[ ~ d(l~ + u)(t). 

We claim that the sequence (M~)n_>0 satisfies the conditions (7) of Lemma 4.2. 

Indeed, that  M0 = 1 is clear, and M 2 <_ Mn- IMu+I  for n _> 1 by HSlder's 

inequality. The verification of the remaining condition ~'~noo=1 Mff l /~  = co is a 

bit more technical, and is postponed to the end of the proof. Assuming this for 

the moment, define f :  R ~ C by 

f ( x )  = -~ e -i tx d(# - u)(t) (x E R). 
o o  

Then f C C~176 and, for each n :> 0, 

f (n)(x) = -~ ( - i t ) h e  -it~ d ( # -  u)(t) (x �9 R). 
o o  

In particular, 

If(n)(:~)l_<~ Itl'~ d(~ + v)(t)  = M,~ (x e a ,  n > O), 
o o  

so f �9 CR({M~}). Also, using (6), we have 

I F  f(n)(0) = ~ ( - i t ) n d ( # - u ) ( t ) = O  for all n > r. 
Oo 

Applying Lemma 4.2, we deduce that f is constant. Moreover, as # and u are 

both probability measures, 

If 1 1 - 0 .  
f ( 0 ) - - ~ j _  l d ( / ~ - u ) -  2 2 

o o  

Thus f - 0, or in other words, 

f? f? e -itx dtt(t) = e -it~ du(t) (x �9 R). 
O o  o o  

Finally, by the uniqueness theorem for Fourier transforms, we conclude that  

# -- u, as desired. 
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I t remains  to justify the claim that z_,n=l n = co. We argue by contra- 
X--,oo M-11~ diction. Suppose, if possible, that Z-~n--X n ,( C~. By HSlder's inequality, 

the sequence M~ 1/n is decreasing, and hence, for each n >_ 1, 

2 n  OO 

nM2~/2n<- E M k l / k <  E M k  '/k" 
k = n + l  k = n q - 1  

In particular, it follows that 

(9) 

Now, for each n >_ 1, 

nM2n l12n ~ 0 as n ~ c~. 

f_ ~o i) 2n d#(t) I z ~ n l  = ( t  - 
o o  

_> f t 2'~ Re((1 - i/t) 2n) dl~(t) - (5n) 2n. 
Ylt [>4n 

For It[ ___ 4n, we have 

l < T r  
[arg(1-  i/t)2~ I - - 1 2 n a r g ( 1 -  i/t)[ <_ 2n/It[ < ~ _ ~, 

and consequently 

1 (1 - 1~I t [ )  2'~ > (1 - 2n/ I t l )  > ~. Re((1 - i/t) 2n) >_ eos (~ /3 ) [1  - i / t l  2~ >_ ~ _ _ 

Hence 

1 t 2~ d ~ ( t )  - (5n) 2n > t ~n 1 
IZ2,~l _> ~ d tL( t )  - ~(4n)  2n - (5n) 2'~. 

Now by (8), if 2n > r then 

t :n d#(t) = ~ d(# + u)(t) = M2n. 
o o  o o  

Substituting this into the previous inequality, and rearranging, we obtain 

M~n < 41Z~n I + (4n) 2" + 4(5n) ~" (n > r/2). 
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Taking 2n-th roots, and using the fact that  (a + b) 1/2n <_ a 1/2~ + b 1/~'~, valid for 

all a, b > 0, gives 

M 1/2'~ < 41/2n[Z2~[ 1/2'~ + 4n + 41/2~5n _< 4[Z2~[ 1/2~ + 24n (n > r/2). 

After dividing through by M1/2'~[Z2n[ 1/2n, this becomes 

[Z2~[ -1/2~ < 4 M ~ / 2 n  + 24nM21/2n[Z2n[ -1/2n (n > r/2). 

By (9), there exists an integer n0 such that 24nM21/2~ < 1 for all n > no. 

Therefore 
1 Z -1/2,~ < 4M;1/2,~ (n > max(r/2,no)) .  
2 2n 

�9 �9 oo - - 1 / n  Thus from the supposition ~-'~=1 M,~ < oc, it follows that  ~ = 1  [Z2nt -1/2'~ < 

co, contrary the hypothesis (6) of the theorem. So finally we conclude that  

EnC~=l M , n  1 I n  = o o ,  as claimed, and the proof of the theorem is complete. | 

5. A q u a n t i t a t i v e  t h e o r e m  

This section is devoted to the following quantitative version of Theorem 1.1. 

THEOREM 5.1: Let (a~),~>o be a sequence of  complex numbers, and for n > 0 
s e t  

t t n  = a k  a n d  Vn  = a k .  

k = O  k = O  
k e v e n  k odd 

Suppose that there exist a real number fl >_ 1 and an integer r >_ 0 such that, for 

all n >_ O, 

(10) lu.I < fl'*(n -4- 1)" and [v,~ I < fl'~(n -4- 1) r. 

Then, for all n >_ r, 

{ C(O, t3)an(1 + log(n+ 1)), i f r  = O, 
(11) la"l-< C(r, 13)a'~-r(n + l) r, i f  r >_ l, 

where 

(12) a = V/~ 2 - 1 and C(r, fl) = r!(v~e)(1 + 1/v~)r+13 2r+1. 

In particular, taking fl = 1, we have a = 0, and thus we recover Theorem 1.1 

as a special case (Theorem 5.1 is expressed in terms of powers of n +  1 rather than 
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of n as a mat ter  of convenience, since this avoids the necessity of making separate 

statements for n = 0). The proof of Theorem 5.1 is based on Cauchy's integral 

formula, so in fact it provides a second proof of Theorem 1.1, independent of the 

theory of entire functions. 

More generally, no matter  what the value of fl, Theorem 5.1 shows that,  start- 

ing from the estimates (10) for un,vn, one always obtains an analogous esti- 

mate (11) for an, but with/~ replaced by the 'improved' value a -- V ~ -  1. 

There remains an exceptional case r = 0, where an extra log(n + 1) appears 

in (11). We do not know if this is really necessary. 

That  the value a given in (12) is sharp is easily seen from the following example. 

F i x r k 0 ,  / ~ k l ,  a n d s e t T = v / / 3 2 - 1 .  F o r n > 0 s e t  

an = n ( n -  1 ) . - . ( n -  r + 1)(i7) n. 

Then 

u n  = R e  k ( k  - 1 ) . . .  ( k  - r + k 

k=0 

= R e n ( n -  1 ) - - - ( n - r  + 1)(1 + i 7 )  n-~, 

with an analogous expression for vn using imaginary parts. Thus (10) holds. On 

the other hand, it is clear that  for n >_ r we have 

lanl >_ constant xTn--r(n + 1) r. 

Thus, if (11) is to hold for all n > r, we must have ~ >_ ~, = X/fi 2 - 1. 

The other constant C(r,~)  in (11) is of lesser importance, and the estimate 

given in (12) is probably not optimal. However, there is a simple example which 

at least explains the presence of the principal term, namely r!. Fix r _> 0, ~ > 1, 

and set 

(~3 rr! i f n = r ,  
an -- 0 if n ~ r. 

Then, evidently un = vn = 0 for all n < r, while for n _> r we have 

Thus (10) holds for all n. If (11) is to be valid for all n _> r, then in particular it 

holds for n = r, and so we must have C(r, 13) > fFr!.  

For the proof of Theorem 5.1, we shall need the following simple estimate. 
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LEMMA 5.2: Let  m,  r be integers with m > 1 and r > O. Then 

1 f2~lsin moteT1 { 1 + log m, ifr = O, 
~ Jo t s~nO l dO< - m ~, i f r  > 1. 

Proof." Note first t ha t  

s i n m O _  e_i(m_l) 0 + e_i(m_3) 0 + . . .  + ei(m_l)O. 
sinO 

In par t icular ,  it follows tha t ,  for each 0 C [0, 27r], 

sin mO 
s--~n-~n0 <-- m �9 

We s ta r t  wi th  the  ease r = O. In this ease, 

Isr. J. Math. 

] f2~rl sinmO I 2 f~r /2  sinmO 

]o [ s-~-OnO [ dO = -~ ]o sinO 
dO 

---- f l l s i n ( m r t / 2 )  dt 
J0 I s in ( r t / 2 )  

[1/~ f l ~ l  < m d t  + - dt 
- -  JO / m  t 

= 1 + log m. 

Next ,  for the  case r = 1, we observe tha t  

( s i n m 0 ~  2 = (e- i (m-1)  0 + e- i (m-3))  ~ + . . .  + ei(m-1)~ ~ 

= e -2i(m-1)~ + 2e -2i( '~-2)~ + . . .  + m + . . .  + e 2i(m-1)~ 

and thus we actual ly  have the equali ty 

1 f2~ ( s inmO~2 
2-~ Jo \ ~ J  d O = m .  

Finally, the  case r >_ 2 follows by remarking  tha t  

1 ~2~ / s i n m 0 ~ 2  r 1 : m m r - 1  mr.  ~rr Jo s i n m 0  ~+1 1 [2~ e ~  0 (s-~-.o) m -  e0 : . 

Proof  of  Theorem 5.1: The  even values of n interact  with the odd values nei ther  

in the  hypothes is  (10) nor in the  conclusion (11). The  two can thus be  t r ea ted  

separately,  and  there  is no loss of generali ty in supposing,  for example ,  t h a t  

aN = 0 for all odd  n. In  this case we have v~ = 0 for all n. 
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For z E C, define 

o(z)=F  zo, 
n = O  
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oo oo ( _ l ) n U  n 

b(z) = Z u'~zn and c ( z ) =  Z z~" 
n! n! 

n=O n=O 
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As in the proof of Theorem 1.1, a, b, c are entire functions of exponential type at 

most/3, and 
a(z)  = e -Zb(z )  = ez~(z)  (z e c) .  

Also, as before, their respective Laplace transforms A, B, C are holomorphic on 

Re ~ >/3, and on this half-plane satisfy 

and 

a n  Un 
A ( { ) =  ~ + 1 '  B ( r  ~ + , ,  

n=O n=O 

-~ (-1)~u~ 
c(r = ;~+1 

A(~) = B(~ + 1) = C(~ - 1). 

Thus, B, C extend holomorphically to {141 >/3}, and hence A extends holomor- 

phically to {1{+11 > /3}U{I~- I  I >/3}. In particular, A is holomorphic {l~l > c~}, 

where c~ = V/~ 2 - 1. This implies straightaway that 

(13) limsup lanl 1/'~ <_ oL. 
n - - ~ o o  

Our aim now is to improve this estimate. 

Fix n > 0, and let m be the smallest integer such that m > n/2.  Take also 
a > fl, and set p = x / a  2 - 1. Consider the integral 

1 1 

On the one hand, substituting into I the formula A(()  = ~k~=o ak/~ k+l and 

integrating term by term (which is legitimate, by (13), since p > c~), we find that  

I = ak 1 -- ~ d~ = a,~. 
= I=-P 

On the other hand, we can estimate 1I I by 

1 ip 2rn r+l 

I Ia( )N l~ �9 
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Now, writing ~ = ipe i~ we have 
ip 2 m  r + l  

[ 1 - - ( ~ - )  =[1--e-2im~ r+l. 

Also, if 1~[ = p and Re4 > 0, then 

o~ ]uk] ~-~ 13k(k + 1) r 

]A(~-)I = IB(~ + 1)1 -< k=o ~ 1r + 11 k+~ <_ k=oA" I~ + iI k+~ 
oo ~k(k + 1) . . .  (k + ~) ~! 

-< ~ ~ ~ i 7 ; ;  : I~ + 11(1-"/I;  + 11) ~+~ 
k=O 

r ! l r  IIr _ r ! l r  l l r ( l r  l l + a )  ~+l 
(1(; + 11 - o-),+1 ( K  + 112 - o'2) T M  

Writing ~ = ipe ~~ again, we have 

Ir + 112 -- 1 + p2 + 2p I sinOI <_ 2(1 + p2) = 2a2 

and 
]~ + 1[ 2 - a 2 = 1 +  p2 + 2p IsinO t _ a2 = 12psinO]" 

Hence 

Isr. J. Math. 

~!(v%Y(v~ + ~)~+~ ~!(v~)~(v~ + i)~§ ~+I 
IA(r < 12p sin 0[ TM 12p sin O[ ~+1 

We obtain the same estimate for [r = p and Rer  < 0 by repeating the argument 

with B(r replaced by C(r Combining all these estimates, we deduce that 

1 [2sinmOlr+l{r!(x/2)r(x/~ +_l)r+la2r+l)pnpd 0 
[I[ <- ~ \ [2psin8[ r+l 

= ~!(v~)r(v~ + 1y+x~2r+lp n - r x  .L 2~ s i n m 0  r + l  
dO. 

2r  sin 0 
If we let a -+/3, then p --+ a, and thus, for n _> r, 

[an[ < r ! (x/2)~(v~+ 1)~+lfl2r+lan-~ 1 f2~[sinmO T--l- 1 

- 2-~Jo I sin0 dO. 
Now, by Lemma 5.2, for n > r > 1 we have 

1 [2~[sinmO[r+l mr (n+2~r<2_r (n+l ) r (n+2~r  
~J0 t s i n 0 ]  dO<_ <_\ 2 ] -  \ -~-~]  

<_ 2- r (n  + 1)r(1 + l/r) r < 2-r (n  + 1)~e, 

whilst if r = 0 then, for all n > O, 

1 f02n sinm0 ( _ n ~ )  2---/ s~nO dO < 1 + logm < 1 + log <_ 1 + log(n + 1). 

Substituting these estimates into the preceding inequality for [a,~[, we finally 

obtain (11). This completes the proof. II 
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6. C o n c l u d i n g  r e m a r k s  a n d  ques t ions  

(i) Theorem 1.1 remains true if we replace (1) by 

k a k = O ( n r )  ( / = l , . . . , q ) ,  

k=_l (rood q) 

provided that  q is an integer with q >_ 3 (note that (1) is simply the case q -- 2). 

The proof is essentially the same as that in w but now using a (slightly eas- 

ier) variant of the Phragm~n-LindelSf principle, where one assumes polynomial 

growth of f along the half-lines arg(z) = 2zd/q (l = 1 , . . . , q ) .  We omit the 

details. 

There is likewise an analogue of Theorem 5.1 for q _> 3, in which a is now the 

smallest radius such that  
q 

{r Ir > c [,.,J{r - > 
l = l  

namely, 
! 

a = ~/j3 2 - sin 2 (r /q)  - cos(r/q) .  

Notice that  a -+ (~ - 1) as q ~ oc. 

(ii) The result mentioned in (i) above leads to an analogue of Theorem 3.2 for 

each q > 3, i.e. a sufficient condition for T q to have a non-trivial closed invariant 

subspace. This raises a question. Do the hypotheses of Theorem 3.2 imply the 

existence of a non-trivial closed invariant subspace, not just for T 2, but for T 

itself? 

(iii) Is the presence of log(n + 1) in (11) really necessary? We suspect not. 

Perhaps it could be eliminated by a judicious application of the theory of singular 

integrals. 

(iv) Theorem 5.1 treats rates of growth of the form/3~(n+ 1) r. However, there 

are other intermediate rates of growth which are also of interest. For example, in 

view of the work of Atzmon [2], it is natural to ask what one can conclude about 

(a,~) from the hypothesis that un, vn = O(ev~). The first part of the proof of 

Theorem 5.1 (up to (13)) shows that,  necessarily, [anl 1/n --+ O. Is it possible to 

say more? 
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